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Exploring gene-gene interactions during embryonic de-
velopment has been pivotal across various microbiologi-
cal sub-fields, from gene functional annotation to under-
standing pathogenesis. Although numerous methods
exist for inferring these interactions from time-series
gene-expression data, they often lack a coherent bio-
physical foundation. In this study, we implement a
gene-gene interaction inference pipeline grounded in
statistical thermodynamics principles. Evaluating its
efficacy on synthetic data and mouse single-cell RNA se-
quencing embryonic developmental data, we attempted
to unveil, for the first time, the gene-gene interactions at
play in murine embryos through the lens of statistical
thermodynamics.

1. INTRODUCTION

Since the introduction of next-generation sequencing (NGS), it
has become possible to sequence thousands of genes simultane-
ously—the so-called high-throughput aspect of NGS. This opens
up the possibility of analyzing how different genes, through ac-
tivation or inhibition, interact with each other. Elucidating gene-
gene interactions enhances our understanding of life, spanning
from low-level cellular processes to the top-level morphology
of an organism, and is essential in all subfields of biology, most
prominently in biomedicine [1, 2].

Many methods have been developed to infer gene-gene inter-
actions from genomic data [3]. Of particular interest is time-
series data, where the gene expression of different genes is
measured discretely at various time points. Intuitively, for a
two-gene system, if the expression of gene A increases over time
while the expression of gene B decreases, we can establish that
gene A inhibits the expression of gene B. Similar reasoning is
employed to establish the activation of genes. For a larger num-
ber of genes, inferring the exact gene-gene interactions becomes
more complex. Extending this logic to Next-Generation Sequenc-
ing (NGS) data, inferring the interactions from the measurement
of thousands of gene-expression profiles per sample is nearly
impossible by hand [4]. Automation of this process, therefore,
becomes essential as the volume of data increases to discover
more complex gene expression patterns.

To address these challenges, Zamanighomi et al. have devel-

oped a gene-gene interaction network inference pipeline based
on the biophysics of dogmatic gene expression [5]. Their method
enables the rapid processing of high-volume time-series datasets,
as their inference pipeline comes down to solving convex op-
timization problems through sparse linear regression. Inter-
estingly, their model was designed for gene perturbation data,
where gene expression disruption needs to occur to induce un-
natural gene expression dynamics, which is subsequently used
to infer gene-gene interactions. Acquiring this data in the wet lab
is an exceptionally laborious task, and for many organisms, such
data is unavailable. However, what is available is time-series
single-cell RNA sequencing (scRNA-seq) data of embryonic de-
velopment [6, 7]. During embryonic development, cells differen-
tiate into specialized entities, each with distinctive morphology
and corresponding gene expression patterns [8]. To some ex-
tent, this dynamic process mimics gene expression disruption,
as external signals often induce significant differences in gene
expression to drive cell differentiation. It is, therefore, interesting
to see if gene-gene interactions can be inferred from embryonic
data to shed light on how developmental genes interact during
processes like gastrulation and organogenesis.

In this honors project, we implemented the gene-gene inter-
action inference pipeline devised by Zamanighomi et al., adapting
it to analyze gene-gene interactions in murine embryonic de-
velopmental single-cell RNA sequencing (sc-RNA-seq) data [5].
The pipeline relies on a simplified biophysics model inspired
by Bintu et al. [9]. The pipeline’s performance is assessed using
both synthetic and authentic developmental embryonic data. To
the best of the author’s knowledge, this biophysics model has
not been previously applied to embryonic data. Furthermore,
this report serves as both a test of the inference pipeline’s effec-
tiveness with non-perturbed time-series gene expression data
and as an exploration of the gene-gene interactions discovered
during the embryogenesis of mice.

2. MODEL

In the simplified version of the model by [5], we simulate gene
expression levels following the central dogma of molecular bi-
ology. This process involves the transcription of genes into
mRNA, and the subsequent translation of mRNA into proteins
[10]. These proteins may then function as regulatory agents,
serving as either activators or repressors for other genes.
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Fig. 1. inference pipeline flow in 4 steps. We first interpolate the discrete gene-expression measurement points to remove noise.
Next, we consider which genes deviate significantly from stead-state gene-expression and add them to G(t). These genes are con-
sidered as possible regulators on all other genes in the system. We then solve two convex optimization problems to infer the protein
expression function y;(t). Lastly, the second convex optimization problem is solved in which we estimate the contribution of every
possible gene regulator to the gene expression of every gene in the system. These coefficients represent the final inferred gene-

network. R=4and T = 0.3

A. Data
The input to the model consists of time-course RNA gene expres-

sion data, denoted as matrix X € RM*N structured as follows:
xo(to) Xo(t1) xo(tn-1)
x1(to) x1(t) x1(tN-1)
X =
xm-1(to)  xm-1(t1) xym-1(tn-1)

Here, x;(t;) represents the RNA expression level of gene i at
time point t;, withi € 0,1,.., M —1andj € 0,1,..,N — 1. The
model then derives significant gene-gene interactions from M
genes observed over N time points. It is essential that M > N
for subsequent regression analysis, which is a valid requirement
given the abundance of gene expression data in the order of
hundreds to thousands [11].

Additionally, protein expression Y € RM*N is subsequently
inferred from X and organized as follows:

yo(to) Yo(t1) Yo(tn-1)
y1(to) yi(t) yi(tn—1)
Y —
ym-1(to) ym-1(t1) ym-1(tn-1)

It’s important to note that Y is not assumed to be an input dataset
for the model.

B. Biophysics

Every gene is assumed to follow the simplified central dogma
model outlined in [8]. In other words, each gene is character-
ized by two first-order differential equations that collectively
describe the concentrations of x;(t) and y;(t) (Equations 1 and
3, respectively). Initially, mRNA is transcribed from DNA, and
Equation 1 captures the dynamics of mRNA expression for any
given gene over time.

dx;(t)
dt

where (7;f;(Y((4))) quantifies mRNA production. Here, 7; repre-
sents the gene-specific transcription rate, and f;(Y5(;)) denotes a
weighted fraction of transcription factors bound to the genome at
time ¢ (Equation 2). Essentially, f;(Y¢(;)) characterizes the proba-
bility of RNA polymerase binding, and thus transcription occur-
ring, based on the protein expression levels of genes out of steady
state up to time point , denoted as Y¢ ;) = v;(#)|Vi € G(t).

= tfi(You) — AN x(t) )

aio + Zjvi(f) aij [Tkes; (1) (1)
1+ Z,-Viq) bij Tkes;; (1) Yk (t)

Here, W () signifies the number of first- and second-order reg-
ulator complexes influencing the gene expression of a given

(2)

fi(YG(t)) =
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gene.

To exemplify, in a two-state system described by imaginary
dataset X' similarly structured in Section 2A, G(¢t) = {1,2},
S; = (@,{1},{2},{1,2}), and W(t) = 4, representing the set
of first- and second-order regulator complexes. The original
function is then expressed as:

Fi(Yo) = M0 +anyi(t) + apya(t) + aiyr ()ya(t)
A6 1+ by (t) + bipya () + bizy1 (£)y2(t)

Now, assuming that from X', we infer gene i to be upregulated
by protein 1 and downregulated by protein 2, the system is given
as:

dxi(t) _ _apo+anyi(t)  rna.
dt 14 boya(h) Al

The mRNA concentrations in Equation 1 are influenced by the
second term, representing basal mRNA degradation in a cell.
A; denotes the gene-specific basal nRNA degradation constant.

When dx’< )
dx,( )

> 0, the mRINA concentration of gene i increases; if

< 0 it decreases. At dx‘( ) — 0, the cell is in a steady state,

and mRNA concentrations remam stable. Similarly, Equation 3
describes the protein level of gene i over time.

WilE) _ i) — APty (1) @

Here, r;x;(t) represents protein production over time, while
the right term represents protein degradation. r; is the mRNA
translation rate of gene i, and A" is the basal protein degra-
dation rate. The same principles apply to protein concentra-
tions over time as described for mRNA concentrations, where
T,',)\FN A,ri,/\lp "t > 0. microRNA influences as described by
Zamanighomi et al. are excluded in this project.

3. INFERENCE PIPELINE

The inference pipeline can be broken down into four steps (Fig-
ure 1):

I) Estimating RNA-expression levels: we interpolate X to esti-
mate x;(t) : R - R,Vi € {0,1,... M —1}.

II) Detecting out-of-steady state genes: through regression
analysis, we construct the time-dependent set G(t) to iden-
tify out-of-steady state genes. At time t, G(t) represents a
set with genesi € {0,1, ..., M — 1} found in the time interval
[0, ), assumed to be potential regulators from that point
onward.

III) Inferring protein expression: solve Equation 3 for all M
genes to infer protein expression y;(t). In our simplified
biophysics model, only the protein products (up to second-
order) serve as direct gene regulators. Each gene has its
tailored version of Equation 3, representing a linear convex
optimization problem.

IV) Estimating coefficients in f;j(Yg(;)): solve Equation 1
through another convex optimization problem to estimate
the coefficients in f;(Y;(y)). This step uncovers the regula-
tory behavior that genes in the system exert on each other.

The computationally most expensive part of the pipeline is
in step IV where the SLSQP algorithm (O(W(t)3)) is used to
solve the final optimization problem [12]. W(t) in the worst case
contains all possible regulatory complexes created by M genes
up to order two which can be calculated as W(t) = 2M — 1+ M.
Hence, part IV has O(23M) time complexity.

The ultimate objective is to estimate the coefficients a;y, a;, ...
and bj1, bjp, ... for all genes i € {0,1, ..., M — 1}. The correspond-
ing protein terms linked to these coefficients appearing solely in
the denominator, act as repressors, with the degree of repression
based on the magnitude of the coefficient. Terms appearing in
both the numerator and denominator may function as either
activators or repressors, based on their relative magnitudes.

I. mRNA Expression Estimation

The first step involves estimating the gene expression function
x;(t) : R — R for all M genes to filter out noise in the measure-
ment points of X. For each gene, a weighted linear sum of D
B-spline basis functions is fitted to the discrete data points.

01
(PD(t)] =)o,

0ip

D
t) = d;@id%(f) = [¢1(t)

@
The i-th B-spline basis function of degree p, ¢; ,(t), is recursively
defined as [13]:

1 ift; <t <tiyq
Piolt) = {0 otherwise

tiypr1 —t

(Pi,p (t) =

Piy1,p-1(t)
tivprr —tipr P
To infer the 0; weights we solve a regularized L, norm mini-
mization problem for every gene i

N-1
min || Y- (x;(t;) — p()"6;)

in || +796] K6;,
i j=0

2 (5)
. 'IN ”
KGi k) = [ 4] (g (ar

where K € RP*D acts as a smoothing factor in the regularization
of the fitted B-spline curve. We use the optimized B-spline
package of scipy for calculating the basis function ¢, (f) non-
recursively to enhance computational efficiency [14]. While
estimating x;(t) as a weighted sum of B-spline functions has the
advantage of obtaining a noise-free estimate of gene expression,
it also provides an immediate expression for the first derivative,

Bl — ol (1):

-

Pip(t) = ——¢ip1(t) — Pit1,p-1(t)

f+p — £ Livp+1 — tita

Thus, the derivative of our gene-expression functions can be
expressed as another weighted sum of B-spline basis functions:

i1

i = o(t)"0;

Z buth(t) = [p1() - op()]

0ip
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Il. Gene-expression Analysis

We then proceed to construct the time-dependent set G(t) based
on the estimated x;(t) (refer to Algorithm 1 and Figure 1II).
The expression pattern over the interval [tg, t_1] is partitioned
into R equally spaced intervals, denoted as t; n = t””% In
each interval [rt; , (r + 1)t y) for ¥ € 0,1, ..., R — 1, we calcu-
late the maximum and minimum values and compare them to
the steady-state measurement at ty. If the absolute difference
between the maximum or minimum exceeds the predefined
threshold T at time point ¢;, we include the gene in G(t;) for all
t> t;.

Algorithm 1. Gene-expression analysis

1: procedure DETECTION(T, R)

2 G(t')«{hto<t' <ty

3 fori € {0,1,2,..,M—1} do

4 forr€{0,1,2,..,R—1} do

5: m max{xi(tk)|k S [rt{l,N}' (T + 1)t{1,N})}
6 | min{xi(tk)|k c [rt{l,N}' (7’ + 1)1’{1,1\]})}
7 if |x;(tg) —m| > T or |x;(tg) — 1| > T then
8 G(t') « iVt >t

9 return G(t)

lll. Protein Expression Estimation

In a manner very similar to estimating mRNA expression levels,
we estimate protein expression by modeling them as a weighted
sum of B-spline basis functions (Equation 6).

Bin
oo | i | =M
Bip

D
wilt) = X2 Buadalt) = ()

We solve Equation 3 by rewriting it as:
(1) i =rixi(t) — AT (1) B
0= —rixi(t) + Bi(p ()T + A" (1))

_r,
0=A;

i

xi(to)
xi(t)

AProte (to) + ¢/ (to)
APt (1) + ¢/ (1)

xXi(tno1)  AP®(tn_1) + ¢ (tn-1)

We can then state this problem as another regularized L, norm
minimization problem for every gene i

i

min|a; | + 7B KB; @
Bi ||,

in which K is defined equivalently as in Equation 5. Furthermore,
we add the constraint that ¢'T g; > 0.

IV. Estimating Gene Regulators Coefficients

The final step of the inference pipeline involves estimating the de-
sired weights of Equation 2 for every gene. These gene-specific
weights express which protein products regulate a gene and to
what extent. To infer them, we solve Equation 1 by transforming
it into another optimization problem. To begin with, we can
rewrite 7 f;(Yg ) in Equation 1 as follows:

Tijo + Z]»Mi(f) Titij [Tres, () Ye(t)
1+ fof) bij kes;; (1) yi(t)

Tifi(Yo(r)) =

i T
{1 ks, () Y (t)) I—[kesiw(,7>(t,-)yk(tj)}

_ D‘iW(t;‘)Tl
1
by

{1 kesi () ve(ty) ers,-waz)(t/)yk(tj)}
biw 1))
:pi(tj)T“i
pi(t)Th;

Note that we have absorbed the term 7; in a; and thereby do not
need any estimate for 7;. Equation 1 can then be rewritten for
every discrete time point £; as

dx;(t;) pi(tj) a

_ _ARNAL (f
dt =y pi(t)Th; ith)
(t))Ta; dx;(t;
o P 8w gy B n‘
p;i(t)Tb; dt =y
dx;(t;)
0= pi(t) " — ANyt + —L5| pate)Te;
-

We can now remove the fractional nature of the differential
equation and formulate the following framework to derive the
a; and b; parameters by solving

IS T RNA dxi(t) T
min || Y (p; ()" a; — (AN () + i )p;i(t;)" b;)
a;,b; i=0 t=t;

2

+7i1 [billa + viz [1bi
s.t.
0<a;<b; b;(0)=1
We obtain the hyperparameters y;; and ;, that minimize the

objective function the best by parsing over 20 logarithmically
scaled values in the range [—5, 5].
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Fig. 2. mRNA expression (left) and protein expression (right) for the 3-gene system 3-gene system as described by the synthetic
model in Appendix A. We sampled 50 equally spaced data points and manually set gene 1 to 0.3 after t = 1. The pipeline has
trouble inferring the expression pattern of gene 1 due to its sudden change in expression level.

4. ARTIFICIAL EXPERIMENT

To assess the pipeline’s performance in recovering a dynamical
system of gene-gene interactions, we generated artificial data
using the synthetic model described in Appendix A, adapted
from [5]. Gene expression data were sampled for three genes at
50 time points. One gene was manually set to increase to 0.3 to
simulate a change in gene expression in response to an external
factor (Figure 2). The advantage of this artificial experiment lies
in having access to the ground truth.

The three steps of the inference pipeline show reasonable
performance, as observed qualitatively from the fitted expres-
sion patterns (Figure 2). Following the approach of the original
authors [5], we evaluate the model’s effectiveness by compar-
ing the inferred coefficients to the ground truth. The parameter
values for a3 and b3 in the ground truth are given as:

as=[01 0 01 0 0 0 0

bs=[1 0 01 01 0 0 0

Our pipeline at best infers

a5 =[0094 0. 0079 0. 0. 0. 0]

bi=[1. 0. 0025 0. 0. 0.034 001

We observe that the model struggles to fully recover the sys-
tem. Our suspicion is that the artificial sharp peak is too difficult
to interpolate, as can be observed qualitatively (Figure 2) and
hence the downstream steps in the inference pipeline suffer from
this inaccurate capture of the gene expression dynamics. Adding
more data, i.e. sampling more time steps and trying different

starting points, did not improve inference significantly. To delve
deeper into how far off the assemble of inferred coefficients is,
we re-plotted the system with the inferred weights (figure 3).
Once again, we see that the pipeline can capture the smooth
gene expression patterns and overall dynamics of the system
quite well but suffers for genes that have sudden changes in
their expression. This limitation of the model was kept in mind
during the rest of the experiments.

5. REAL-WORLD APPLICATION: MURINE EMBRYONIC
DEVELOPMENT DATA

A. Data preprocessing

To evaluate the model’s performance on real biological data
and assess its ability to infer gene-gene interactions during cell
differentiation, we utilized single-cell RNA sequencing data
from 116,312 mouse cells sampled at 9 time points by Pijuan-Sala
et al. [6]. The data is accessible at Atlas accession E-MTAB-
6967!. Expression levels were measured at six-hour intervals
post-fertilization between stages E6.5 and E8.5 (Figures 4A &
4B). For the analysis, we extracted RNA counts (representing
gene expression) of key genes in 6 cell types during embryonic
development. The selected genes are Nanog, Pou5f1 (Oct4),
Sox2, Tbx3, Klf2, and Nodal. These genes are known to be
key regulators in various developmental stages, exhibiting high
fluctuations in their expression levels over time [15]. For all 37
cell types, we processed the raw counts to obtain a read count
per gene per embryonic developmental stage, keeping track of
the number of cells per cell type expressing a specific gene at
a given stage. Subsequently, we corrected for the number of
cells contributing to the read count and performed min-max

Thttps:/ /www.ebi.ac.uk/biostudies/arrayexpress/studies/E-MTAB-6967
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normalization across all counts for the 6 genes at 9 discrete time
points.
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(a) Murine embryonic developmental stages at which scRNA-seq data was
sampled. Numbers indicate days after fertilization. TS stands for Theiler
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g development of mice. Taken and adapted from figure 1A in [6].
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inal weights for our inferred weights in the differential equa-
tions (Appendix A).

B. Experiment

For all cell types, we ran the inference pipeline and plotted
the corresponding network (see Appendix A for links to all
inferred weights and networks). Here, we highlight the inference
pipeline for two cell types: mesenchyme and visceral endoderm.

Figure 5 shows the RNA gene-expression patterns interpo-
lated and analyzed for our out-of-steady state genes. We visually
observe the benefit of the B-spline gene-expression function as it
mitigates modeling the noisy pattern while following the general
trend of the genes.

The corresponding networks for these cell types (Figure 6)
have relatively low number of interactions inferred, showing the
sparseness that the inference method favors. The thickness of the
arrows represent the relative amount of regulation compared to
the other arrows. Green arrows represent activation, red arrows
inhibition.

Our pipeline identified the Poubf1-Sox2 regulatory complex
that activates Nanog in the visceral endoderm [16]. As for the
other interactions, determining how accurately they represent
true gene-gene interactions in murine embryonic cells is chal-
lenging. These interactions might indirectly demonstrate connec-
tivity through other regulators, yet there is no literature corrobo-
rating these findings. The mesenchyme network correctly infers
the positive self-regulation of key regulators Nanog and Poubf1.
However, the activating activity of Tbhx3 is mistakenly inferred.
Additionally, Sox2 is erroneously downregulated by Pou5f1, and
assessing the correctness of other regulators is equally challeng-
ing. Overall, the results appear less promising than anticipated,

(b) UMAP of scRNA-seq dataset sampled at different points over time. Taken
and adapted from data exploration tool in [6]. The color gradients from red
to blue in different directions represent different cell specializations during
differentiation. We chose a subset of these paths for our analysis.

Fig. 4. Mouse embryonic development sampled every 6 hours
from E6.5 until E8.5 post-fertilization.

particularly for other cell types like endothelium or erythroid
cells. Many false positives and false negative interactions are
inferred (see Appendix A).

6. DISCUSSION & CONCLUSION

In this project, we have implemented a gene regulatory network
inference pipeline based on the biophysics model described by
Zamanighomi et al. and Bintu et al. [5, 9]. First, we simplified
the model for it to be able to capture second-order gene-gene
regulatory behavior. For artificial data, we were successful up to
a certain extent. The tumultuous gene expression patterns were
difficult to capture, which hampered network inference later on.
As the authors of [5] suggest, modeling smooth perturbations in
a gene network should improve matters. We tried this but did
not see an overall improvement in the inferred coefficients (Ap-
pendix 7). Where one coefficient would improve, another one
would be less well characterized. We also tried adding multiple
perturbations (Appendix 7) but, again, did not see an overall
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Fig. 5. Min-max normalized mRNA expression for mesenchyme (left) and visceral endoderm (right).

Gene Regulation Network for Mesenchyme
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T
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Thx3 « Nanog P;::;l
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Fig. 6. The final gene-gene interaction networks for mesenchyme and visceral endoderm cell-types left and right, respectively. The
relative size of the arrows represent the extent of regulation (i.e. activation or inhibition). Note for example that there is a green
activating arrow from {Pou5f1, Tbx3} to Sox2 but barely see-able due to the low level of activation. All other networks can be

found online in the links in the appendix (7).

improvement of the inference. The search space is most probably
multimodal and we are stuck in a local minimum during opti-
mization. Trying the different optimization algorithms in scipy
[14] did not improve matters. Nevertheless, even though the
global minimum could not be found, we do capture the overall
dynamics of the system as can be observed in our reconstruction
plots (Figure 3 and Appendix A).

Secondly, we attempted, for the first time, to infer gene-gene
interactions during embryonic mouse development from sc-
RNA sequencing data using this model. As described previ-
ously, the framework was designed initially to infer a gene-gene
interaction network from gene expression measurements that
are out-of-steady state. Embryonic cell expression is constantly
activated and repressed due to external cues and cell-cell com-
munication [8]. Hence, we ought it probable that the simplified
model could capture gene-gene interactions in embryonic gene
expression data. For two cell types, mesenchyme and visceral
endoderm, we correctly established a few regulatory interac-
tions but the majority of interactions is could not be found back
in literature. This problem is even more prominent in other
cell types (see links to data in appendix (A)). Errors in infer-

ence might be due to the sparsely sampled gene expression and
the inherent noise of the measurements. Furthermore, we have
already observed in the artificial experiments that our model
suffers especially from chaotic gene expression patterns. In ad-
dition, we now set unknown parameters (e.g. 7;, /\ZRN 4 etc.) to
value 1 out of convenience and due to a lack of information on
these but more accurate knowledge on these parameters should
improve inference as well. Lastly, the search space might contain
too many optima, causing the minimization problem to be stuck
locally and thereby wrongfully inferring the weights. Nonethe-
less, we successfully extracted meaningful signals, providing a
solid foundation for future enhancements and advancements.

One possible improvement in the inference pipeline would
be to solve Equation 1 through other optimization methods
like SINDY-Pi [17]. Mangan et al. even already went this far
by using the implicit-SINDy algorithm directly on the mRNA
expression patterns to infer gene-gene interactions [18]. A next
step in this line of research would be to see if the implicit-SINDy
algorithm can also infer the coefficients in the fractional term of
Equation 1. If this inference is successful for the simple model,
including extra regulators like microRNAs could then lead to
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more improvements. Given all this, the biophysics model still
has a lot of potential and with the increase in the quantities of
data nowadays, it might elucidate new gene-gene interactions
in the future.

Data & source code. All data and code needed for reproducing
the experiments and creating figures shown in this report are available
online at https://github.com/MaEduard /network_inference.
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7. APPENDIX

A. synthetic Model

dxy _ 0.1+ 0.05y1y2 + 0.025y1y3 —0dx
dt — 1+01y; + 10y; +0.05y1y2 + 0.025y1y5
dxy 0.1+ 0.1y, +0.1y1y2 — 0dx
dt ~ 1+01y; +0.1yiyn + 10y1y3s 2
dxs - 0.1+ 0.1y2
At 1401y, +0.1y3 0-1x3
d
% = X1 — O5y1
dy2 _
s 2xp — 0.5y
d
% = X3 — 0.5]/3
RNA expression inference embryonic data. All

synthetic and Dbiological data can be found back here:
https:/ /github.com/MaEduard /network_inference/tree/main/data.
All figures, including plots not shown in the report, can be found here:

1. rna-expression: https://github.com/MaEduard /network_inference/tree/main/src/rna_expression_bio
2. protein expression: https://github.com/MaEduard /network_inference/tree/main/src/protein_expression_bio

3. network plots: https:/ /github.com/MaEduard/network_inference/tree /main/src/network_plots


https://github.com/MaEduard/network_inference/tree/main/data
https://github.com/MaEduard/network_inference/tree/main/src/rna_expression_bio
https://github.com/MaEduard/network_inference/tree/main/src/protein_expression_bio
https://github.com/MaEduard/network_inference/tree/main/src/network_plots
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